

Table Of Contents

Section � - Introduction

Book Goals

Section � - The Typescript Type
System

A Simple Example - Why Doesn't This Work?

Key Concept 1 - Type Inference

Key Concept 2 - Structural SubTyping - How are types

de�ned?

Key Concept 3 - Type Compatibility

Section � - Typescript Type Definitions
What are the multiple scenarios for Typescript Type

De�nitions?

How do I use libraries that don't have Type De�nitions

available?

Using Javascript Libraries with No Type De�nitions Available

A simple way to run Typescript �les

How does the Any Type work?

What is the relation between Type De�nitions and Npm?

https://angular-university.io/course/getting-started-with-angular2?utm=amz-ts

Do we really need type annotations to get type-safety?

Why Type safety does not mean more ceremony when coding

The biggest advantage of Typescript

How to make the most of Typescript Type De�nitions

What is @types, when should I use it and why?

What happened to the typings executable and

De�nitivelyTyped?

Not all type de�nitions leverage completely the Typescript

type system

What are compiler opt-in types, when should I use them and

why?

Why do I sometimes get this 'duplicate type de�nition' error?

Handling the gap between libraries and the compiler

Guidelines for Using the multiple Type De�nitions available

When should we use compiler opt-in types?

When should we use @types?

What if no type de�nitions are available?

How to make sure our programs leverage type safety

e�ectively?

Section � - Conclusions & Bonus Content
Final Thoughts

Bonus Content - Typescript - A Video List

The Typescript Jumpstart Book

Introduction and Book Goals
Welcome to the Typescript Jumpstart Book, thank you for joining!

Without further ado, let's get started: like the title says, the goal of the

book is to get you proficient quickly in the Typescript language!

There is one fundamental assumption that this book makes, which is

that you already have some experience with another object-oriented

programming language such as for example the most common

statically-typed languages:

Java

C#

Scala

You could also be familiar with one of the the most popular dynamically-

typed languages, such as for example:

Javascript / ES6

Ruby

Python

Most likely you are familiar with a combination of several. Typescript

brings the best of these two worlds into one single language, that is

gaining popularity very quickly.

Google has recently announced that it will start using Typescript

internally alongside Java, so Full stack development in Typescript using

Node as a runtime will likely become mainstream in the next few years

and fulfill the old Java dream:

Write Once, Run Anywhere - this is possible today with Typescript!

If you are familiar with any of the languages mentioned above, then

essentially you already know most of Typescript: it will look and feel

extremely familiar.

In fact, any Javascript program is also a valid Typescript program! But

this familiarity is very deceptive because the Typescript type system is

at the same time:

very similar to currently statically typed type systems like Java, C#

or Scala

but at the same time fundamentally different than those type

systems, and designed for maximum compatibility with existing

dynamically typed Javascript codebases

Due to this large similarity to things that you already know for years,

going through a huge catalog of language features would not be a good

use of your time and attention: it would just be repeating the official

documentation, right?

Instead, to become proficient with Typescript we need to focus on the

key differentiating new factors that the language brings to the table.

We want to focus on the fundamental aspects of the type system, and

on the key language feature that gives Typescript its name: the Type

Definitions.

And that, in a nutshell, is what we will be doing in this book. We will

provide an answer to the following key questions:

How does the type system really work under the hood?

How does it combine the best of both dynamic and statically

typed languages?

In which way is this type system better and why is it designed

in a certain way?

What are the di�erent types of type de�nitions, when to use

each and why?

This small set of key concepts, together with your background in a

previous language is all you really need for comfortably start writing

Typescript programs.

Let's then start exploring the key concepts of the Typescript language,

we will start at the beginning: the Typescript Type System.

To make the most out of this book, I invite you to try as we go along the

examples on this next section using the Official Online Typescript

Playground.

On the second section, we will be using the command line Typescript

compiler which is based on the Node runtime.

https://www.typescriptlang.org/play/index.html

The Typescript Type System
A key thing about the Typescript Type System is that most of the times

it just works, but sometimes we get some surprising error messages

that give us an indication that there is something fundamental about it

that we might not be aware yet.

The great thing about Typescript, is that we could go for months using it

without knowing some important concepts about what is going on with

the type system.

We will find unexpected compiler error messages, but not to the point

where we can't use Typescript and be productive with the language,

because in general it just works.

But if we add these concepts to our toolbox, this will make our

experience of the language much more enjoyable and productive.

We are going to break this down step by step into 3 key concepts.

A Simple Example - Why Doesn't This
Work?
Let me give you a quick example of what we mean when we say that the

type system is actually quite different than other type systems. Let's try

to guess if this simple code example would compile our not:

1

2

3

4

let user = {};

user.name = 'John';

5

If we are not familiar with how the Typescript Type system works, we

might be surprised to realize that this actually does not compile. So why

is that? Let's have a look at the error message:

Error:(54, 6) TS2339:Property 'name' does not exist on

type '{}'.

So what is going here? We have defined an empty object first and then

tried to assign it the name property. This is just plain Javascript code,

and Typescript should allow us to write that transparently. So why the

error message?

This is related to the first key concept that we are going to cover: Type

Inference.

Key Concept � - Type Inference is Always
On
The key thing to start understanding this error is to realize that Type

inference is active here. So the user variable was automatically

assigned a type even if we didn't add any explicit type annotation.

If we hover over the user variable, we can see the inferred type. In

Webstorm, if we click the variable and hit Ctrl+Shift+P, we get the

following inferred type:

type: {}

You might think at this point, what is this type?

You might have heard of the type Any and the compiler property

noImplicitAny .

We can see that the Any type is not related to this situation, because the

inferred type is not Any. So what is that type that was just inferred?

We are going to understand that by providing another example, have a

look at this and try to guess if it compiles, and if not what is the error

message:

1

2

3

4

5

6

7

8

9

Again it might be a bit surprising that this code does not compile. Here

is the error message:

Error:(59, 8) TS2339:Property 'lessonCount' does not exist

on type '{ name: string; }'.

And if we check what is the inferred type of the variable course, we get

this type:

type: {name:string}

let course = {

 name: 'Components'

};

course.name = 'Components and Directives';

course.lessonCount = 20;

Let's break this down, so what is going on in this scenario?

We can see that the variable course is not of type Any, it got a

di�erent type assigned

The type inferred looks like it's the one of an object that has

only one property named `name'?

We can set new values to this property called name

but we cannot assign any other variable to a variable of this

type

Let's test this to see if its true
Let's see if this could be the case, that indeed a type was inferred with

only one property. Let's define such type explicitly:

1

2

3

4

5

6

7

8

9

As we can see, we have defined the type inline using a Type annotation.

The result is that we get the same error message as above: we can

overwrite name but we cannot set a new property lessonsCount .

This seems to confirm that there was a type inferred with only one

property. What if we define this type not inline, but create a custom

type? For example like this:

let course : {name:string} = {

 name: 'Components'

};

course.name = 'Components and Directives';

course.lessonCount = 20;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Notice the use of the interface keyword for defining a custom object

type, the Course type. In Typescript the interface keyword is not just an

object oriented concept, it has been generalized to include objects also:

In Typescript, a custom object type can also implement an Interface!

And this generalization of the notion of interface will make even more

sense in a moment. Back to the code example just above, we also get

the same error message as before:

Error:(59, 8) TS2339:Property 'lessonCount' does not exist

on type '{ name: string; }'.

Which in this scenario would make much more sense because we are

defining the type explicitly and not via type inference.

So what does this all mean? This leads us to the Key Concept number 2

in the Typescript Type System.

Key Concept � - Types are defined by the

interface Course {

 name:string;

}

let course : Course = {

 name: 'Components'

};

course.name = 'Components and Directives';

course.lessonCount = 20;

Key Concept � - Types are defined by the
collection of their properties
In the current version of Typescript, the type system is said to be based

on structural subtyping. What does this mean?

It means that what defines a type is not so much its name (like nominal

type systems that are common in other languages). Instead, what

defines a type is a collection of specific properties and their types.

For example what defines the type of the Course custom type is its list

of properties, and not its name.

Also, if a variable has no type annotation associated to it, Typescript will

look into its collection of properties and infer a type on the fly which

contains that particular set of properties.

So how does this explain the compiler errors?
That is why the type inferred in course is type: {name:string} .

Because the object only has one property with that particular name.

And this is also why we get a compiler error while assigning

lessonCount to the course object.

This is also why we can't assign a name to the user property: because

the inferred type is type {} , which means that user is an object with

no properties, an empty object essentially.

So we could only assign it to another empty object. And this leads us to

the last key concept: Type Compatibility.

Key Concept � - Type compatibility

Key Concept � - Type compatibility
depends on the list of properties of a type
As we have seen what really defines a type in Typescript is its list of

properties:

So that same list of properties and their types is also what defines if two

types are compatible!

Have a look at this example where we define two types and assign them

to each other:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

interface Course {

 name:string;

 lessonCount:number;

}

interface Named {

 name:string;

}

let named : Named = {

 name: 'Name goes here'

};

let course: Course = {

 name: 'Components and Directives',

 lessonCount: 20

};

named = course;

course = named;

There is still a compilation error here. This line named = course does

compile correctly, because Course has all the mandatory properties

needed by Name , so this type assignment is valid.

Note that the Course interface does not need to extend Named , like in

other type systems (nominal type systems).

But the line course = named does not compile, and we get the following

error:

Error:(73, 1) TS2322:Type 'Named' is not assignable to

type 'Course'. Property 'lessonCount' is missing in type

'Named'.

So as we can see in the error message, the two types are not compatible

because of a missing property, and not because the two types are

different.

So How to we fix the compilation error?
Let's go back to the initial example and make it compile, as it's a very

common case:

1

2

3

4

5

By assigning the type Any to the user variable, we can now assign it any

property we need, because that is how the Any type works. Another

let user:any = {};

user.name = 'John';

thing about the Any type is that we could take the variable user and also

assign it to anything.

So annotating a variable with type Any is essentially telling the compiler

to bypass the type system, and in general not check type compatibility

for this variable.

How To Define Optional Variables
Another way of fixing this type of errors is to mark variables as optional,

for example by annotating variables with a question mark:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

interface Course {

 name:string;

 lessonCount?:number;

}

interface Named {

 name:string;

}

let named : Named = {

 name: 'Name goes here'

};

let course: Course = {

 name: 'Components and Directives',

 lessonCount: 20

};

named = course;

course = named;

In this example, we have marked the lessonCount variable as optional

by adding a question mark to the member variable declaration in

Course . So now the line course = named also compiles, because

named has all the mandatory properties of the Course custom type.

So as we can see at this point, although the Typescript Type System

looks very familiar to developers coming from other languages at first,

its actually designed in a fundamentally different way.

Why was the Typescript Type System designed like
this?
The type inference mechanism and the type compatibility features of

Typescript are very powerful and generally just work. We could actually

code for a long time in Typescript without realizing what is going on

under the hood except for some occasional error messages.

We can see why the Type system is built like this: its to allow as much

as possible a style of coding that is almost identical to plain Javascript.

Everything is based on type inference as much as possible, although

there are places like function arguments where we need to add type

annotation if setting noImplicityAny to true, because there is no way

for the compiler to infer those types.

The type system is built in a way that most of the error messages we get

are actually errors that we would want to fix.

What is the tradeoff involved ?
But there is a small tradeoff involved to get all these type safety features

which include: catching errors at compile time, refactoring and find

usages.

We will on occasion get an error for something that would just work in

plain Javascript like the first scenario we saw in this section.

This does not happen very often, and when it happens it can be fixed

using the Any type. It's better to try to use Any the least possible, to

keep all the benefits of the type system intact.

The Typescript language is continuously evolving, its even in the works

the possibility of adding nominal typing, have a look at this Github issue.

Also, another key feature is that in Typescript the type annotations are

optional, and if we want to work with Javascript libraries

that where not written in Typescript (which is the vast majority of

libraries available), we will need to bring our own Type Definitions.

But there are many types of definitions to choose from, so in the second

section of this book we will learn which ones to use in which situation.

We will also be introducing the command line Typescript compiler and a

bit of the ecosystem around it.

Typescript Type Definitions
Typescript has been evolving very quickly, and one of the things that

have evolved more is its most differentiating feature: the Typescript type

definitions.

https://github.com/Microsoft/TypeScript/issues/202

If you have been using Typescript with Angular recently or without it, you

might have run into a couple of the following questions or errors

situations:

Does Typescript type safety necessarily mean more ceremony

when writing code?

What are the multiple types of Typescript Type De�nitions?

How do I use libraries that don't have Type De�nitions

available?

What is the relation between Type De�nitions and Npm?

When to install third party types?

How can packages provide their own custom types?

What is @types , when should I use it and why?

What happened to the typings executable and

De�nitivelyTyped?

What are compiler opt-in types, when should I use them and

why?

Why do I sometimes get a 'duplicate type de�nition' error,

and how to �x it?

Why does it look like Promise type de�nitions sometimes

don't work correctly?

Recommendations on to use Typescript type de�nitions

e�ectively

We are going to be covering all of this in this section, I invite you to code

along (from an empty folder) to get the most out of it.

What are the multiple scenarios for

What are the multiple scenarios for
Typescript Type Definitions?
In Typescript 2 and beyond, when using a Javascript library there are

now essentially 4 scenarios in what concerns type definitions:

No type de�nitions of any kind are available

Type de�nitions are available and shipped together with the

compiler itself

A library does not ship with type de�nitions, but they can be

installed separately

A library ships with its own type de�nitions built-in

So what is the difference? Let's start at the beginning: what if there are

no type definitions at all? Because that is a very common case and will

be so for years to come (if not forever).

So let's start with that: we have no guarantee that Javascript modules in

the future will be systematically shipped with their own types, or that

someone will write those types, publish and maintain them.

The larger and most used modules will likely have good type definitions,

but what about smaller modules?

How do I use libraries that don't have Type
Definitions available?
Let's start with a simple example, let's setup a node project in an empty

folder and install a simple module named uuid, that generates unique

identifiers.

https://www.npmjs.com/package/uuid

1

2

3

4

5

6

7

8

9

10

11

12

Please notice that here we have created an initial package.json with

npm init, and have installed a local version of Typescript. If you open

this folder with an IDE like for example Webstorm, the Typescript version

inside node_modules will be taken and used automatically.

So you don't have to install Typescript globally, and its probably better to

avoid to install it globally to avoid version confusions between projects,

command line and IDE.

So now that we have installed uuid , how do we use it?

Using Javascript Libraries with No Type
Definitions Available
First, let's check which version of Typescript we are using by doing tsc

-v . What happens if we try to import the uuid library? Let's give it a try:

1

2

3

4

npm init

.... hit enter to all questions

install Typescript locally, inside node_modules

npm install --save-dev typescript

setup a Typescript compiler configuration file tsconfig.json

./node_modules/.bin/tsc --init

install uuid

npm install --save uuid

import * as uuid from 'uuid';

console.log(uuid());

OK, so what is going on in that import statement? Let's break it down:

we are using the ES6 import syntax to import something from

an ES6 module named uuid

we are saying that the module will have a default export

because we are using *

We are assigning whatever that single export is and assigning

it to a constant named uuid , but what type will it have?

And then we are using the uuid , which has implicitly taken the type

any and we are using it to call it as a function. Let's try to run this to see

what happens.

A simple way to run Typescript files
But this is a Typescript file, so we can't call node on it and run it. Do we

need a complex build system for that? No, we could simply create an

npm script task that calls the tsc compiler and then runs the output

using node.

But let's keep the file system clean of generated files, let's instead using

an utility called ts-node:

1

2

3

With ts-node installed, let's add a npm script task to run our test

program above, which will be in a file called test.ts :

1

install ts-node

npm install --save-dev ts-node

{

2

3

4

5

6

7

8

9

10

11

12

13

OK, so now we can run the test program using a simple npm command:

1

2

3

What will the results be of such a simple program?

What is going on here is that there is a uuid module present, but uuid

is not shipped with its own type definitions.

Since Typescript 2.1 or above, if we have a CommonJs module available

inside node_modules that has no type definitions available, we will still

be able to import it and use it.

But how can we use it as a function, what type is uuid then?

What happens is that this module is being imported and implicitly

assigned to the Any Type.

How does the Any Type work?

 "name": "types-examples",

 "scripts": {

 "demo": "./node_modules/.bin/ts-node ./test.ts"

 },

 "devDependencies": {

 "ts-node": "^2.0.0",

 "typescript": "^2.1.0"

 },

 "dependencies": {

 "uuid": "~3.0.1"

 }

}

npm run demo

The Any type allows up to essentially bypass the type-safety of the

Typescript type system:

we can use Any as a function and call it using parentheses like

we did with uuid

a variable of type Any is assumed to potentially have any

property, like a plain Javascript object

we can also take a variable of Type Any and assign it to

essentially anything else (without getting an error)

What does the use of the Type Any mean?
This means that although our program compiles we are essentially back

to writing plain Javascript with that library: we won't have reliable auto-

completion or refactoring.

But this also means that any module in npm is available for being

seamlessly used in a Typescript program!

So this is a great start. If anything else fails we simply write Javascript

and it just works. But how can we improve this and get type safety for

the most commonly used npm libraries?

What is the relation between Type
Definitions and Npm?
Let's now cover modules that ship with their own types. There are more

and more modules each day that get shipped in npm with their own

type-definitions already built-in.

This means that the types are shipped directly inside the node module

itself, and don't have to be installed separately.

Let's start with a example, let's for example install the Axios isomorphic

HTTP library. If you don't know Axios, it's a great library for doing both

Ajax on the client and HTTP calls on the server, while using the same

Promise-based API:

1

2

3

This command will install Axios, so we could start using this client to

query a REST API using plain Javascript. The good news is: we can also

do the same thing in a type-safe way as well!

This is because Axios comes with its own type definitions built-in. Let's

have a look:

1

2

3

4

5

6

7

As we can see, the Axios node module comes bundled with its own Type

definitions, so we don't need to install them separately! So let's see this

in action in our program:

1

2

3

4

5

6

npm install --save axios

cd node_modules/axios

bash-3.2$ ls -1 *.d.ts

index.d.ts

import axios from 'axios';

import {AxiosPromise} from "axios";

const response: AxiosPromise = axios.get('/lessons', {

 ...

7

8

The Axios library has a default export that we have imported and gave

the name axios . This import has implicitly the type AxiosStatic as

declared on the Axios type definition file.

Do we really need type annotations to get type-
safety?
This import named axios is not of type Any, and we have auto-

completion available as well as refactoring and find usages, all working

out of the box.

More than that, do you see the AxiosPromise type annotation? It's

actually redundant, if we delete it the type of the response the constant

would still be inferred as being of type AxiosPromise , and we would

have auto-completion working for that variable as well.

More than that, do you see the configuration object after the url? That is

automatically inferred to be of type AxiosRequestConfig , so we have

auto-completion to fill in the request parameters as well.

Type safety does not mean more ceremony when
coding
So why don't we get a compilation error at this stage because the object

is empty?

That is because the AxiosRequestConfig type definition only has

optional properties. With our IDE we can jump into the definition of

AxiosRequestConfig :

});

1

2

3

4

5

6

7

8

As we can see, all the properties are marked as optional using a

question mark. So this is a good example of how using a library with

built-in type definitions does not mean more verbosity in our program, or

getting constant compiler errors.

The biggest advantage of Typescript
With Typescript, we can mostly have both the convenience of plain

Javascript plus the enhanced tooling. If we use libraries that provide

their own built-in types, we can have auto-completion, refactoring and

find usages almost everywhere in our program, at the expense of using

just a few type annotations at strategic places.

The biggest exception for this will be function parameters, where there

is no way for the compiler to infer what is the type of a function

parameter. But it's a great idea to mention the types of our function

parameters for documentation purposes.

How to make the most of Typescript type
definitions
If you want to leverage Typescript type inference to its maximum and

have it auto-detect the type of the largest amount possible of variables,

the best way is to go to the tsconfig.json and set the noImplicitAny

property to true:

export interface AxiosRequestConfig {

 url?: string;

 method?: string;

 baseURL?: string;

}

1

2

3

4

5

6

7

8

This way, if by some reason the compiler can't infer the type of a

variable, it will not implicitly assign it the type any. This is probably one

of the most important properties available to configure the compiler.

We could almost have named it useTypeInferenceAsMuchAsPossible

instead of noImplicitAny

Now let's take the Axios type definitions, and see what we can do with

them in terms of helping us to build a type-safe program.

Leveraging the Promise API in our
programs
We would like to be able to define a method that does an HTTP call and

returns a Promise of a given type:

1

2

3

4

5

6

7

8

9

10

11

{

 "compilerOptions": {

 "module": "commonjs",

 "target": "es5",

 "noImplicitAny": true,

 "sourceMap": false

 }

}

import axios from 'axios';

import {AxiosPromise} from "axios";

interface Lesson {

 id:number;

 description: string;

}

12

13

14

15

16

17

18

19

20

21

22

23

24

25

So what have we done in this small program? Let's break it down:

we have created a custom object type called Lesson , with two

mandatory properties

we have de�ned a function getLesson that does an HTTP call

and returns a Promise

We are trying to specify what is the data returned by the

promise via a generic parameter in the AxiosResponse type

So out goal here is to have type safety in the then clause, by knowing

there implicitly that the data returned is Lesson , without having to use a

type annotation.

Trying to use generics in promise return types
So what is the result? We currently get two compiler errors:

Error:(13, 38) TS2315: Type 'AxiosPromise' is not generic.

Error:(21, 14) TS7006: Parameter 'response' implicitly has

function getLesson(lessonId:number): AxiosPromise<Lesson> {

 return axios.get(`lessons/${lessonId}`);

}

const promise = getLesson(1);

promise.then(response => {

 ...

});

an 'any' type.

So what do these errors mean? Let's break it down:

we can't specify the data returned by an Axios promise, via a

generic parameter

this means that the data returned is implicitly of type Any

the promise response is also implicitly of type any, which

throws an error

At this point, we can see that the Promise type definitions shipped with

Axios although useful, would need some extra type annotations to

ensure type safety on our program. For example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

And this would work great, have a look at line 9 we added an explicit

type annotation.

But at this point we could think that Promise is a standard ES6 API, so

why not use that instead? We would benefit both from a standard API

function getLesson(lessonId:number) {

 return axios.get(`lessons/${lessonId}`);

}

const promise = getLesson(1);

promise.then(response => {

 const lesson: Lesson = response.data;

 ...

});

and type inference in our program.

So if this would be a node program, how could we do that?

Writing Node programs using the standard
Promise API
What we need to do is to use another library that does not necessarily

ship with its own promise type definitions, or in this case that returns

Promise-like types that are compatible with ES6 promises.

Let's for example set up request-promise , which is a promise enabler

for the popular request node HTTP client:

1

2

3

4

So how can we use this client to write type-safe node programs, using

the standard promise API?

Using Node require in Typescript programs
The way that request-promise works is that it has the same API as

request , but it returns promises. So how can we use it? We could start

by using it as a plain node module, by requiring it like this:

1

2

3

But at this point we would get an error:

npm install --save request

npm install --save request-promise

const rp = require('request-promise');

Error:(3, 12) TS2304:Cannot find name 'require'.

What is happening here is that we have no type definition for this global

function named require .

The Node runtime does not ship with its own type definitions, so we

need to import those types separately. Where can we find them? They

are also in npm but need to be installed separately.

We can install the node runtime type definitions in the following way:

1

2

3

So what did this do, what is this @types module?

What is @types , when should I use it and
why?
This @types scoped package is where we can find a ton of useful type

definitions, such as for example the type definitions of node that allow

us to use require for example.

But if you have been following Typescript for a while, you might

remember something called DefinitivelyTyped, and a typings executable,

that we used to use before to install type definitions.

What happened to the typings executable
and DefinitivelyTyped?

npm install @types/node --save-dev

If we head over to the npm page of the @types scoped package, we can

see what happened there - @types.

As we can see, all the content of DefintivelyTyped is now available under

the @types scoped package, and we don't need anymore to use the

typings executable to download type definitions.

We can now simply use npm and the Typescript compiler will implicitly

take any type definitions installed inside the node_modules/@types

folder and include it during compilation transparently.

When to use @types then ?
The @types scope package contains type definitions for a lot of

libraries, like Express, Sequelize, JQuery, and many others. So

definitively have a look there if you are missing some type definitions,

but make sure of two things first:

check if the package you are using already has types built-in,

and if so prefer those

check if type de�nitions are already shipped with the

compiler, more on this later

The type definitions inside @types are super helpful, but some of those

types might not be appropriate anymore in certain situations. Let's give

an example with the Promises library.

Using Request Promise to build a type safe
promise call

https://www.npmjs.com/package/@types/npm

Let's start by installing the type definitions for request-promise

available in @types , and if you have been coding along its a great time

to uninstall axios to avoid library conflicts:

1

2

3

4

5

Now that we have the type definitions for request-promise , this is the

program that we would like to be able to write:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

But at this stage, we get an error:

Error:(11, 38) TS2304: Cannot find name 'Promise'.

Understanding the Cannot Find Promise common

npm uninstall axios --save

npm install --save-dev @types/request-promise

import * as rp from 'request-promise';

interface Lesson {

 id:number;

 description: string;

}

function getLesson(lessonId:number): Promise<Lesson> {

 return rp.get(`lessons/${lessonId}`);

}

const promise = getLesson(1);

promise.then(lesson => {

 we want this lesson variable to be implicitly of type Lesson

});

Understanding the Cannot Find Promise common
issue
So it looks like the node runtime type definitions that we added to our

program don't include promises. So let's have a look at @types to see

where we can find them.

Please do read the conclusions section on this, but right now let's say

that we would bring some type definitions from @types for Promises:

So what will this do? IT will install type definitions for ES6 promises,

which includes a generic parameter for the Promise type.

So now we can say that this function returns a Promise of Lesson, and

have the type of the variable lesson to be correctly inferred by the

compiler as being of type Lesson.

Which is exactly what we wanted, but there is a huge catch. And it's a

good example of how we should not take all the types available in

@types systematically, but pick and choose.

What is the catch with the use of es6-
promise?
To understand what the problem is, let's try the following program, which

should throw an error:

1

2

3

4

5

6

7

import * as rp from 'request-promise';

interface Lesson {

 id:number;

 description: string;

}

8

9

10

11

12

Can you see the issue? The function is returning a Promise of string,

because the lesson has been transformed into a string by the then

clause.

But yet the program compiles without any error. So what is going on

here?

Not all type definitions leverage completely
the Typescript type system
As we have seen before, not all type definitions leverage the type system

to its maximum extent. This is also because the Typescript compiler

features keep evolving so fast that not all type definitions leverage all

the latest features.

Which can be great because we might not want to use generics all the

time in our programs, so returning Any in our API and assuming the

caller will add a type annotation is a viable solution as well.

But in this case, we would really like to use Promise with a generic

parameter, because it's a really great fit for that. It really makes sense to

specify in our program what type of data is the Promise expected to

return, and use that information to type-check the program.

So what can we do? It turns out that the Typescript compiler itself ships

with a ton of Type definitions ready to use, and one of them is Promises.

What are compiler opt-in types, when

function getLesson(lessonId:number): Promise<Lesson> {

 return rp.get(`lessons/${lessonId}`)

 .then((lesson:any) => Promise.resolve(lesson.description));

}

What are compiler opt-in types, when
should I use them and why?
Have a look at the compiler options, at the --lib flag here.

There are a ton of type definitions available that come bundled with the

compiler, including for example all the type definitions of ES6 itself,

which includes Promises.

So we can simply leverage these by using the lib compiler flag:

So with this, the compiler knows of a Promise type that is built-in with

the compiler. So if we compile our program with that turned on, what do

we get?

Initially we will get a few errors:

node_modules/@types/es6-promise/index.d.ts(42,19): error

TS2300: Duplicate identifier 'Promise'.

node_modules/typescript/lib/lib.es2015.iterable.d.ts(145,1

1): error TS2300: Duplicate identifier 'Promise'.

...

Why do I sometimes get this 'duplicate type
definition' error?
In this case, we have a type definition named Promise in two places:

one via @types/es6-promise

the other via the built-in compiler types that we have opted-

in

https://www.typescriptlang.org/docs/handbook/compiler-options.html

So how do we solve this duplicate type definition issue ? The solution is

to uninstall the types that we had installed via @types for promises:

Now we are only going to get this errors:

test.ts(11,12): error TS2322: Type 'Bluebird<any>' is not

assignable to type 'Promise<Lesson>'.

Property '[Symbol.toStringTag]' is missing in type

'Bluebird<any>'.

It turns out that @types/request-promise already comes with its own

Promise type definitions after all: Because those type definitions use

internally Bluebird type definitions (Bluebird is a great promise library,

used by Sequelize for example - a Node ORM).

So what can we do at this point? Because it looks like the type

definitions of @types/request-promise are incompatible with the types

from the ES6 built-in type definitions at the moment.

This a temporary situation because Bluebird promises used to be

compatible with ES6 promises for a long time, and actually this is likely

to have already been solved by the time you read this.

What to learn from this example?
This is a good example of how using the latest type definitions might

not always be viable or the best approach at any given time. It's an

option but needs to be weighed against other things.

Sometimes using the simpler types that are available like AxiosPromise

or the return of request-promise calls is a much more viable

alternative, and then simply add a few extra type annotations where

necessary, in case those APIs return Any.

it's not because an API returns an explicit any that we need to use any also

in our own program

So as a general guideline, it's better to choose packages that come with

built-in types and use those types as much as possible via type

inference, only importing third party types if needed and picking and

choosing the best fit at each moment.

What would the error look like that we were looking
for?
Let's try to see if Typescript catches the error that we are trying it to

throw with a simpler example (taken from this issue report). How about

this:

This would throw as expected the following error:

test.ts(31,16): error TS2322: Type 'Promise<string>' is

not assignable to type 'Promise<Foo>'.

 Type 'string' is not assignable to type 'Foo'.

So the compiler is prepared to handle the detection of this error. It's just

that the library type definitions available need to evolve over time to

leverage this functionality, and there will likely always be some sort of

gap.

Handling the gap between libraries and the compiler

https://github.com/Microsoft/TypeScript/issues/12023

The Typescript compiler will apply the latest type checks to any type

definitions available in node modules, including @types .

To avoid this, and ensure that only our program is checked by the

compiler we can use the flag skipLibCheck to true.

This prevents the more recent versions of the compiler to throw errors

against ancient libraries and also has the added benefit of increasing

the performance of your build in a noticeable way.

OK so now we have reached the end, it was a bit of a roller coaster but

this is very close to the everyday issues that you will find while

developing with Typescript.

Let's try to make sense of it all, and try to come with some general

guidelines to use the type system effectively.

Guidelines for Using the multiple Type
Definitions available
If we are using Typescript, we have multiple sources of Type Definitions,

and knowing which ones to choose and why is essential to be able to

have a good developer experience.

We need to be aware of one thing: the compiler is always adding more

features, but the libraries available might not leverage them yet.

When should we use compiler opt-in types?
It's a great idea to use the compiler built-in types (the lib flag) as much

as possible because those types are written to maximize the type safety

of our programs and make sure we conform to standard APIs.

https://www.typescriptlang.org/docs/handbook/compiler-options.html

But depending on the current state of existing libraries, it might

introduce other issues. When opting-in to compiler built-in types, do

make sure that they don't conflict with types that we already imported

before like es6-promise , and that they don't affect third party types if

not needed by using skipLibCheck .

But don't feel obliged to use opt-in types, there is a good reason why

right now they are turned off by default, it's because of backwards

compatibility with part of the existing ecosystem.

When should we use @types?
It's better to instead of using @types systematically, to try to use the

built-in types of each module as much as possible, and use @types

strategically if necessary for example for modules like Express or

Sequelize.

Plain Javascript modules like those two will likely make the bulk of your

program and have great types available on @types . But for example

newer modules like Firebase: they already come with types now.

So if you also install @types/firebase you will run into duplicate type

issues.

On the other hand things like @types/node are essential to writing any

node program.

So the suggestion here is: have a look at the built-in types to see if there

is anything there similar to what you are looking for. Have a look at the

node module itself to see if it has already types inside it: this will be

more and more common.

If no types are found neither inside the module nor built-in to the

compiler, then have a look at @types to see if there are some good types

there. Fast forwarding to the future, the ideal would be that @types no

longer exists and that most libraries ship their own type definitions.

But that won't happen anytime soon and its great to have those high-

quality types there available.

What if no type definitions are available?
If no type definition files are available for a given library, that will not

prevent us from using it. With Typescript 2.1, we can import the library

directly and anything imported will be assigned the type Any.

So we can seamlessly integrate with any existing Javascript module

without special integration needed.

How to make sure our programs leverage
type safety effectively?
One of the best things we can do other than carefully choosing the types

we add to our program is to turn noImplicitAny to true.

This will have the effect that the compiler will be able to infer almost all

types in your program, at the expense of only a few type annotations,

especially in function arguments which is a great thing to add anyway.

Conclusions
Let's summarize what we have learned about Typescript. In the next

section, have a look also at the bonus content video list. There is a link

to a free Angular course right at the end of the book.

I hope that you enjoyed this book and that it helped you make sense of

the key aspects of the Typescript Type System and Type Definitions in

the most effective way.

Please let me know your thoughts on this book in the comments.

As we could see, these two key points are crucial for understanding

Typescript, and without them, we would have a hard time making sense

of the language:

it's a structural subtyping system and not a nominal subtyping

system, meaning that type compatibility is achieved by comparing

lists of properties and not type names

there are multiple types of Type Definitions (@types , built-in

compiler types and package types), and it's essential to know when

to use each and why

With these two key points in place, we are in a great point for starting

Typescript development: now you will really be able to leverage all the

familiarity to the features that you already know from other languages,

and will be able to cope with the vast majority of the type-safety related

compiler error messages that you might come accross.

Typescript will likely evolve in the next few years as a full stack single

language development solution: the future looks bright for Typescript!

I hope that you enjoyed this book and I will talk to you soon.

Kind Regards,

Vasco

Angular University

Typescript - A Video List
In this section, we are going to present a series of videos that cover

some very commonly used Typescript features.

Click Here to View The Typescript Video List

These are the videos available on this list:

Video 1 - Top 4 Advantages of Typescript - Why Typescript?

Video 2 - ES6 / Typescript let vs const vs var When To Use

Each? Const and Immutability

Video 3 - Learn ES6 Object Destructuring (in Typescript),

Shorthand Object Creation and How They Are Related

http://blog.angular-university.io/why-typescript-video-list

Video 4 - Debugging Typescript in the Browser and a Node

Server - Step By Step Instructions

Video 5 - Build Type Safe Programs Without Classes Using

Typescript

Video 6 - The Typescript Any Type - How Does It Really

Work?

Video 7 - Typescript @types - Installing Type De�nitions For

3rd Party Libraries

Video 8 - Typescript Non-Nullable Types - Avoiding null and

unde�ned Bugs

Video 9 - Typescript Union and Intersection Types- Interface

vs Type Aliases

Video 10 - Typescript Tuple Types and Arrays Strong Typing

	Table_Of_Contents.pdf (p.1-2)
	Typescript_Jumpstart_Book.pdf (p.3-44)
	Blank Page

